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1. Introduction

Crude oil is the major input of world oil industry. Qil price
shocks are expected to have essential impacts on the real econ-
omy in both oil-importing and oil-exporting countries. Therefore,
it is not surprising that a great number of studies investigate the
effects of oil price shocks on the macroeconomic variables including
output and inflation (Hamilton, 1983, 1996, 2003; Mork, 1989;
Hooker, 1996; Bernanke et al., 1997; Kilian, 2009), trading account
(Schubert, 2014; Kilian et al., 2009), interest rate (Herrera and
Pesavento, 2009; Kormilitsina, 2011; Rahman and Serletis, 2010)

¥ This work was supported by the Chinese National Science Foundation through
grant numbers 71401077, 71501095, and the Fundamental Research Funds for the
Central Universities through grant number 330110004005040042.
* Corresponding author at: Xiaolinwei 200, Xuanwu District, Nanjing 210094,
China. Tel.: +86 13681663442.
E-mail address: wangyudongnj@126.com (Y. Wang).

http://dx.doi.org/10.1016/j.eneco.2016.04.008
0140-9883/© 2016 Elsevier B.V. All rights reserved.

and stock prices (Kilian and Park, 2009; Park and Ratti, 2008;
Wang et al., 2013; Sadorsky, 1999; Papapetrou, 2001). In this paper,
we focus on the relationships between crude oil and stock prices.

The rationale behind oil-stock relationship is that innovations in
oil prices can cause changes in both real cash flow and expected
returns of stocks (Jones and Kaul, 1996). Recently, a strand of studies
focuses on the dynamic correlations between oil and stock returns
(see, e.g., Arouri et al., 2011; Chang et al., 2013; Creti et al., 2013;
Chkili et al., 2014; Filis et al., 2011; Sadorsky, 2012; Wang and Liu,
2015) because correlation (or covariance) has important implica-
tions for asset allocation and portfolio optimization. Notably, some
studies find the asymmetry in the oil-stock return relationships
(see, e.g., Chang et al., 2013; Arouri et al, 2011). Specifically,
correlations during the period when stock and oil prices increase are
different from those during the period when both prices decrease.
This asymmetry can be explained by the asymmetric effects of oil
price changes on the real economy (see, e.g., Hamilton, 1996, 2003;
Mork, 1989).

In related studies, multivariate  GARCH (MVGARCH) models
are always employed to reveal the correlated behavior. Although
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MVGARCH can well capture dynamics of conditional variance and
covariance, there are still some limitations in empirical applications.
For example, the BEKK-GARCH of Engle and Kroner (1995) is subject
to the problem of “limited dimensions”. Specifically, it is compu-
tationally infeasible to estimate a full BEKK with more than half a
dozen variables. Too many parameters to be estimated will interact
in a way that is too intricate for existing optimization algorithms to
converge in the process of parameter estimation (see, e.g., Ledoit et
al., 2003). The dynamic conditional correlation GARCH (DCC-GARCH)
of Engle (2002) greatly simplifies multivariate specifications and
can be estimated more easily. However, Engle and Sheppard (2005)
argue that DCC has only been successfully applied to up to 100
assets and the estimation becomes increasingly cumbersome as the
dimension grows. The factor GARCH of Engle et al. (1990) and Ng
et al. (1992) can deal with large numbers of variables but it suffers
from two drawbacks (Engle and Kelly, 2012). First, it is not clear what
the factors are or factor data may be not available in the real world.
Second, the residuals may be still correlated after controlling for the
factors (see, e.g., Engle, 2009a,b; Rangel and Engle, 2012).

To address the drawbacks of traditional MVGARCH in doing with
high dimension assets, Engle and Kelly (2012) propose a model
called Dynamic Equi-correlation (DECO) which can eliminate the
computational and presentational difficulties of high dimension
systems. DECO assumes that each pairs of returns in a system
display the same correlation which changes over time. Although
this assumption looks like a bit strict, likelihood calculation of
DECO is greatly simplified and parameter estimation becomes much
more feasible for high dimension systems because equicorrelation
matrices have simple analytic inverse and determinants.

In this paper, we use DECO to investigate correlations between
returns of energy futures and 23 stock market indices in major
oil-importing and oil-exporting countries. To accommodate the
asymmetry in oil-stock relationships, we extend Engle and Kelly
(2012)’s DECO by introducing an asymmetric variable to the dynamic
equation of covariance. Our asymmetric DECO (ADECO) considers
two asset blocks that the first block contains energy futures and
the second block contains stock indices. Following the core
assumption of DECO, we also assume that each pair of assets within a
block presents the same correlation and the returns of two different
assets in various blocks are also correlated in the same way but the
correlations are allowed for changing over time.

In addition to aforementioned methodological contribution, we
further empirically contribute to the literature in two dimensions.
First, we investigate whether oil-stock correlations differ depend-
ing on a country’s net position in world oil market. A few studies
have found that the impacts of oil price shocks on stock market
activities rely on whether a country is a net oil exporter or importer
(see, e.g., Park and Ratti, 2008; Wang et al., 2013). Therefore, it is
highly possible that oil-stock return correlations for oil-importing
countries are different from those for oil-exporting countries. How-
ever, this issue has been addressed in very few of papers except
Filis et al. (2011) and Wang and Liu (2015). Second, to evaluate
the usefulness of correlation out-of-sample, we consider a portfo-
lio with petroleum futures and stocks in which the optimal weights
of individual assets are determined by the forecasts of variance and
covariance in the minimum-variance framework. In recent years,
commodity futures have emerged as a popular equity-like asset class
for many financial institutions due to the financialization of com-
modity markets (Gorton et al., 2013; Gorton and Rouwenhorst, 2006;
Tang and Xiong, 2012). However, how to allocate assets between
commodity futures and stocks has not been considered in existing
studies. We will fill this gap in this paper.

We employ weekly price data covering the period from 2000 to
2015. Our in-sample evidence suggests that the correlations between
oil and stock returns are significantly asymmetric for both oil-
importing and oil-exporting countries. The correlations are positive

most of time. The plausible explanation is that the major determi-
nant of oil price changes in our sample period is global demand that
can drive both oil and stock prices to change in the same direction
(Wang and Liu, 2015). The oil-stock correlations are stronger for
oil-exporting countries than for oil-importing countries. This makes
sense because oil-exporting economies depend on crude oil trading
more heavily (Wang et al., 2013).

We compare the out-of-sample performances of ADECO with
popular DECO, DCC and ADCC models. We find that the optimal
portfolio with petroleum futures and stocks in oil-exporting coun-
tries display lower return variance than portfolio with petroleum
futures and stocks in oil-importing countries. This result holds
for each correlation model under consideration, indicating that
oil-exporting countries stock market can better hedge oil risk.
More importantly, we find that ADECO can provide the portfolios
with lower return variance than the other three models, regard-
less of whether the stocks in oil-exporting or oil-importing countries
are used. This finding highlights the importance of accounting for
asymmetry in a dynamic correlation model. The reason is that
asymmetric model can better capture the phenomenon that oil-
stock return correlations during the period when prices increase are
significantly different from correlations during the period when
prices decrease. For robustness check, we also consider petroleum
futures contracts with different maturities. Generally speaking, our
out-of-sample results consistently support the superiority of ADECO
in modeling and forecasting the correlations between petroleum and
stock returns.

The remainder of this paper is organized as follows: Section 2
presents the model specification and estimation method of ADECO.
Section 3 provides data and some preliminary analysis. Section 4
shows the main empirical results. The last section concludes the
paper.

2. Methodology

We extend the dynamic equi-correlation (DECO) model by
introducing the asymmetry to the dynamic process of conditional
covariance. Then, we use the proposed asymmetric DECO (ADECO)
model to investigate the relationships between the two groups of
stock index and petroleum futures returns. In this section, we show
the specification and the methodology of parameter estimation of
ADECO.

Suppose the vector of asset returns is denoted by r, =
(rit: T2, - -+, Tne), Where 1y, is the return of the ith asset at time t and
n is the total number of financial assets, our model is given by,

It = l._l+d)®rt_] +et
=p+dorn+H" z (1)

where it = (fy,--- ,fl;) is the constant conditional mean vector
and coefficient ¢ = (¢q,---,¢,). The symbol ® means element-
by-element multiplication. H; is the variance-covariance matrix of
returns and Htl/ 2 can be obtained by the Cholesky decomposition of
H;. z; follows the standard multivariate normal distribution.

Following the DCC model of Engle (2002), H; can be decomposed
as follows:

H; = D¢R(D, (2)

where D; = diag(v/hy¢,--- ,+/hnt) is a diagonal matrix in which the
diagonal elements hy, k = 1,---,n, follow the process of a univariate
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Fig. 1. Energy futures prices with different maturities.

GARCH process. R; is a conditional correlation matrix. Therefore, let
o = D7 Y(re —ft—  © 1r_1), we have

455

where F;_; denotes the information available at time t. The dynamic

process of correlation matrix can be written as follows:

TtlFe-1 ~ N(O,Ry), (3) Q@ =0Q( —-a-b)-Kg+af17_y + gke_1ki_; + bQ¢ (4)

Table 1

A list of stock indices.
Oil-exporting countries Oil-importing countries
Stock indices Countries Stock indices Countries
DSM index Qatar AEX index Holland
FBMKCI index Indonesia ASX index UK
IBOV index Brazil BELSTK index Belgium
IBVC index Venezuela CDAX index Germany
INDEXCF index Russian FSSTI index Singapore
MEXBOL index Mexico KOSPI index Korea
MSM30 index Oman MADX index Spain
NGSEINDX index Nigeria NIFTY index India
OSEAX index Norway NKY index Japan
SASEIDX index Saudi Arabia SBF250 index French
SPTSX index Canada SHCOMP index China

SPX index us
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Fig. 2. Stock indices in oil-exporting countries.
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where Q = E[RF], ke = I(ft < 0)© fr, K = E[k:k;]. Since the
expectations for Q and K are unavailable in practice, we replace
them with their sample analogues, T-' 3"I_, 7 and T-' 3"I_, k:k;,
respectively. T is the sample size. I(-) is an indicator function
which takes the value of 1 when the condition in the parenthesis
is satisfied and zero otherwise. Q; = diag(/Gi1t, -+ »+/Qune) is @
diagonal matrix, in which the elements are the square root of
corresponding elements in Q.

From Eq. (4), we can see that the parameter g describes the
role of asymmetric effect. The positive value of g implies that
the correlations are stronger during the period when asset prices
decrease than the correlations during the period when asset prices
increase. This asymmetry has been a stylized fact in stock markets
(see, e.g., Longin and Solnik, 2001; Ang and Chen, 2002). Appar-
ently, DECO can be taken as a special case of ADECO for g = 0. To

ensure that Q; is a positive-definite matrix, the sufficient and nec-
essary conditions are needed as follows (Cappiello et al., 2006):

a,b,g>0; a+b+Anxg <1, (6)

where Apax i the maximum eigenvalue of the matrix
Q-12KQ-1/2,

It is argued that the DCC specification of Egs. (4) and (5) becomes
much more difficult to estimate when the number of assets increases.
The main reason is that the inverse and determinant of matrix R¢
cannot be expressed explicitly. Too high dimension of asset return
matrix is likely to cause the unavailability of likelihood function
of Eq. (3) due to the out-of-memory of computer system. To over-
come this problem, we follow Engle and Kelly (2012) by imposing
following two assumptions on the structure of conditional correla-
tion matrix. We consider a two-block case of Engle and Kelly (2012)’s
DECO model, in which the first block contains energy futures and
the second block contains stock indices. The first basic assumption
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Fig. 3. Stock indices in oil-importing countries.

is that returns of each pair of assets within a block display the same
correlation at a given time. The second assumption is that returns of
each two assets belonging to two different blocks also present the
same correlation. Certainly, all correlations are allowed to change
over time. According to these two assumptions,

(1 = p11,0)In, 0
R = 0 (1 =pah, |+

Pi1,nyxn; P12.t)ny xny
P21.nyxny P22ty xny |+ (7)

where I, is the p-dimensional identity matrices, and Jp, «p, denotes
the p; x p, matrices of ones, and at t time, we have,

1 qijt
Pt = ——, k=1,2; ®
S =T, A
B 1 Qijt
Prikpt = Phokeyt My My 5 Jekzm v
ki,ko = 1,2 and ki # ky. (9)

where the number 1 and 2 denote Block 1 and 2, respectively. gj;, is
the element in the matrix Q.

As R; is the covariance of ; (see, Eq. (3)), thus we need to impose
some restrictions to guarantee that this covariance matrix is positive
semi-definite. Following Engle and Kelly (2012), we give the positive
definite condition for matrix R; as

pie (7nf_]1,1), i=1, (10)
1

and

PR —\/(p“(’“ — D+ Dpza(n =D+ 1)
niny

\/(Pl,l(nl—1)+1)(Pz,2(”2—1)+1) (a1
ninp

The two restrict conditions above are equivalent to the require-
ment that all eigenvalues of matrix R; are positive, which leads to
matrix R; being positive definite.
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Table 2

Descriptive statistics of energy futures and stock returns.
Countries Mean Std Skew Kurtosis JB stat LBQ stat ARCH stat
Energy commodities
Crude oil 0.188 0.758 -0.236 5.144 163.062* 15.424** 57.009"**
Gasoline 0.255 0.901 —-0.144 5.633 237.354" 13.463* 83.335"*
Heating oil 0.271 0.728 -0.133 4.126 45.273*** 4.027 57.161*
Stocks indices of oil-exporting countries
Qatar 0.656 0.554 -1.141 13.479 3891.293** 14.782* 84.330"*
Indonesia 0.126 0.376 —-0.356 5.083 163.895** 10.981x 53.431*
Brazil 0.091 0.834 -1.324 12.796 3484.047** 30.023"* 31.440**
Venezuela 1.768 0.830 -0.818 44.613 58678.673"* 31.430*" 1.431
Russian 0.421 0.869 -1.011 12.861 3428.629"* 19.944* 123.256***
Mexico 0.388 0.603 -1.350 15.141 5233.534*** 17.905*** 60.000*"*
Oman 0.285 0.429 -1.369 21.775 12180.383*** 27.409"** 175.028**
Nigeria 0.274 0.571 —-0.011 6.571 431.424+* 24.499* 64.624"*
Norway 0.376 0.636 —1.006 7.897 948.438"** 21.385 224.756"*
Saudi Arabia 0.406 0.556 -1.531 11.663 2855.962** 17.587** 112.727+
Canada 0.161 0.490 —-0.827 7.072 653.517"* 14.488** 169.530**
Stock indices of oil-importing countries
Holland —-0.071 0.563 —-0.636 6.779 537.882%* 14.133* 125.725***
UK 0.019 0.448 -0.610 5.993 353.611** 15.040*"* 137.477+
Belgium 0.308 0.495 -0.714 6.451 471.820%* 4.658 145.158**
Germany 0.183 0.563 -0.714 5.950 363.523** 14.624** 89.920"*
Singapore 0.130 0.472 -0.209 7.241 614.393"* 9.487+ 119.229*
Korea 0.205 0.705 -0.570 11.166 2299.942++* 20.969"** 368.039"**
Spain 0.050 0.570 —-0.333 4.619 103.695** 5.922 128.655*"*
India 0.364 0.630 —0.246 5.391 201.550"** 12.403** 75.321*
Japan —-0.057 0.461 -0.238 4.638 98.443** 9.337x 73.354*
French 0.019 0.539 —-0.530 5.554 258.717* 18.177+* 99.118"
China 0.306 0.573 -0.576 7.512 733.778** 11.580* 49.923*+
us 0.099 0.387 -0.617 7.847 846.404"** 9.107 72.247

Notes: B stat, LBQ stat and ARCH stat are the statistics testing for normal distribution, serial correlation and ARCH effect, respectively.

* Denotes rejections of null hypothesis at 10% significance level.
** Denotes rejections of null hypothesis at 5% significance level.
=+ Denotes rejections of null hypothesis at 1% significance level.

According to Lemma 2.3 in Engle and Kelly (2012) paper, the
inverse and determinant of correlation matrix can be explicitly
written as,

) bl,t’nl 0 C1tJnyxny C3tSnyxny
Ry = 0 b2,t1n2 + C3,t]n2 x1q CZ,tan xny | (12)
where
bi: = 1 i=1,2 (13)
it =7 —pir’ , 2,
- P11 pa2e(ng — 1) + 1] = p2, my
1t —

(o110 = 1) I11tm = 1)+ 1lpzans = 1) + 1] = mymap?, |
(14)

Table 3
Estimation results of ADECO.

Oil-exporting countries Oil-importing countries

Params Standard error Params Standard error
a 0.0096*"* 0.0019 0.0485*"* 0.0059
g(asym) 0.0024** 0.0011 0.0104+ 0.0071
b 0.9877** 0.0019 0.9207*** 0.0087
Notes:

* Denotes rejections of null hypothesis at 10% significance level.
** Denotes rejections of null hypothesis at 5% significance level.
** Denotes rejections of null hypothesis at 1% significance level.

p22lpi1e(m = 1) + 1] = pi,

Gt = )
(P22 = D{[P11elm = 1) + 1] [p2aelnz = 1) + 1] = mnapd, |
(15)
_ P12t (16)
ninapy, — [P11e(n1 — 1) + 1] [pa2e(ny — 1) + 1]
and
IRel =(1 = p11,)" (1 = paze )2 H{[1 + (11 — Dp11s]
x[1+ (12 = Dpzac] = phy,mina ) - (17)
The log likelihood function based on R;l and |R¢| is given by,
1T
Loglik = -5 > (1og IRel + ?;R;lﬁ) ) (18)
=1

We can see that for any asset number, the log likelihood is
simplified greatly. We can calculate the sum of this log likelihood for
both blocks and estimate the model parameters via maximizing this
sum' .

Following Engle and Kelly (2012), we use the two-step method to
estimate the parameters of our ADECO. At the first step, we estimate

1 This method is called composite likelihood, which is always used to estimate
high-dimension models. For the detailed description of this method, one can refer to
the literature review in Varin et al. (2011).
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Table 4
Variance of portfolio.

Oil-exporting countries

Oil-importing countries

ADECO DECO ADCC DCC ADECO DECO ADCC DCC
Add energy commodities
Variance 3.648 3.881 4.110 4.410 5.905 7.182 6.136 6.708
DM(ADECO vs ) —1.396x -2.172* —2.921" —5.211** —0.496 —1.582x
DM(DECO vs ) —0.805 —1.609x 2.637 1.129
DM(ADCC vs) —3.058*** —5.430"**
Remove energy commodities
Variance 5.063 5.108 5.108 5.198 7.236 7.290 7.183 7.182
DM(ADECO vs ) -1.221 -0.129 —0.603 -0.770 0.433 0.303
DM(DECO vs ) 0.064 —-0.416 0.463 0.334
DM(ADCC vs) —1.419x 0.309

Notes: The variances reported in this table are for the percent returns (i.e., original returns multiplied by 100). The numbers in bold denote that the corresponding model has the
lowest variance. DM(A and B) means Diebold and Mariano (1995) statistics testing for the null hypothesis regarding the predictive accuracy of model A and model B is equivalent.

* Denotes rejections of null hypothesis at 10% significance level (one-side test).
* Denotes rejections of null hypothesis at 5% significance level (one-side test).
=+ Denotes rejections of null hypothesis at 1% significance level (one-side test).

the parameters of univariate GARCH model for returns of individual
assets in each block. Then, we estimate the dynamic equation ADECO
(Eq. (4)). We employ the AR(1)-GJR(1,1) specification? to model the
dynamics of return volatility of individual assets:

Tie = U+ érie1 + /hiceir
hiy = ©+ ae?,_; + vllej;_1 < 0le?,_; + Bhis_
6 ~ N(0,1) (19)

wherei=1,---,n.

3. Data

We employ weekly futures price data of three energy commodi-
ties including crude oil, gasoline and heating oil. All these energy
futures contracts are traded in NYMEX. For each commodity, we
consider futures contracts with four different maturities. Contract 1
denotes the one specifying the earliest delivery date. For gasoline
and heating oil each contract expires on the last business day of the
month preceding the delivery month. Thus, the delivery month for
Contract 1 is the calendar month following the trade date. For crude
oil, each contract expires on the third business day prior to the 25th
calendar day of the month preceding the delivery month. If the 25th
calendar day of the month is a non-business day, trading ceases on
the third business day prior to the business day preceding the 25th
calendar day. After a contract expires, Contract 1 for the remainder
of that calendar month is the second following month. Contract 2-4
represents the successive delivery months following Contract 1. All
energy price data are collected from the website of Energy Informa-
tion Administration (EIA) (www.eia.gov). The graphical illustrations
of energy futures prices are given in Fig. 1.

We choose weekly stock indices in 11 major oil-exporting
countries and 12 oil-importing countries. We use the weekly data
even though daily data are available because it is less possible
to rebalance portfolios every day due to the effect of transaction
cost. High-frequency data also brings greater computational burden
in the process of obtaining out-of-sample forecasts. Our selection

2 Since itis found in the literature that stock returns are significantly autocorrelated
(see, e.g., Di Matteo et al., 2005), we use AR(1) to capture dynamics of conditional
mean. Glosten et al. (1993) further find that the stock volatility is always greater when
stock price decreases than when stock price increases. To account for this asymmetry,
we use GJR model to describe conditional volatility of stock and oil returns.

criteria for these countries are based on Kilian et al. (2009) and
Wang et al. (2013). Generally speaking, we choose the countries
with the highest oil export (or import) volume. But we exclude sev-
eral major exporters such as Iran and Iraq since the stock price
data are not available or very limited for these countries (Jung and
Park, 2011). All stock indices are transformed to US dollar prices to
eliminate the effect of exchange rates. The stock indices and
exchange rates data are obtained from Bloomberg database. Table 1
lists the name of stock indices and corresponding country names.
We plot the stock prices in oil-exporting countries and oil-importing
countries in Figs. 2 and 3, respectively. Our data cover the period
from February 2000 to August 2015. Our sample starts from January
2000 because for the stock indices of some countries such as Saudi
Arabia are unavailable earlier than this time point.

In the empirical analysis, we use the stock returns which are
obtained by calculating the log differences of prices. In order to
compare the performances between commodity and stocks mean-
ingfully, we follow the literature by controlling the leverage in
futures trading. Specifically, we assume that futures positions
are fully collateralized (see, e.g., Hong and Yogo, 2012; De Roon
et al,, 2000; Gorton et al., 2013). When an investor buys contract
with a futures price of 50 dollars, he or she should simultaneously
invest 50 dollars in Treasury bills. The total return earned by the
investor over a given period is the change in futures price and
the interest rate on the 50 dollars, scaled by the initial 50 dollars
investment. In this way, the energy futures returns can be calculated
as follows:

Tet = log(Fe) —log(Fer—1) + Tft (20)

where F is the futures price at week t and ry, is the risk-free rate.

Table 2 reports the descriptive statistics of energy and stock
returns. We can find that all energy returns as well as stock returns
display the positive mean values but negative skewnesses. The
standard deviations suggest that energy prices are more volatile
than most stock prices. The Jarque-Bera statistics show rejections
of the null hypothesis of Gaussian distribution for all return series,
indicating the fat-tail distribution. The Ljung-Box statistics show the
rejection of the null hypothesis of no serial correlation up to the
order of 10. This motivates us to use the AR(1) model to capture the
conditional mean of returns. The chi-square statistics of ARCH test
also reject the null hypothesis of no ARCH effect, which moti-
vates us to employ GARCH specification to capture the dynamics of
conditional variance of individual assets.
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Table 5
Variance of portfolio when alternative futures contracts are used.

Oil-exporting countries

Oil-importing countries

ADECO DECO ADCC DCC ADECO DECO ADCC DCC
Contract 2
Variance 3.534 3.842 4.017 4.244 5.856 7.076 6.040 6.605
DM(ADECO vs ) —2.434 —2.366""* —2.822* —4.823** —0.331 —1.429+
DM(DECO vs ) —0.589 —1.268 2.569** 1.044
DM(ADCC vs) —2.541** —5.478***
Contract 3
Variance 3.572 3.842 3.954 4.368 5.856 7.023 5.944 6.605
DM(ADECO vs ) —3.255* —1.456+ —2.535* —4.589*** -0.110 —1.463+
DM(DECO vs ) —0.375 —1.558x 2.610** 0.837
DM(ADCC vs) —3.551** —6.143***
Contract 4
Variance 3.648 3.842 3.985 4.537 5.808 6.970 5.923 6.605
DM(ADECO vs ) —2.668*** —1.321« —2.677** —4.729* —0.223 —1.558+
DM(DECO vs ) —0.474 —1.896** 2.533* 0.782
DM(ADCC vs) —3.837" —6.213**

Notes: The variances reported in this table are for the percent returns (i.e., original returns multiplied by 100). The numbers in bold denote that the corresponding model has
the lowest variance. DM(A and B) means the Diebold and Mariano (1995) statistics testing for the null hypothesis regarding the predictive accuracy of model A and model B is

equivalent.
* Denotes rejections of null hypothesis at 10% significance level (one-side test).
** Denotes rejections of null hypothesis at 5% significance level (one-side test).
*+* Denotes rejections of null hypothesis at 1% significance level (one-side test).

4. Empirical results

In this section, we first show the in-sample estimation results of
our ADECO to see whether the asymmetry exists in energy-stock
return relationships. Second, we give the out-of-sample performance
of ADECO in portfolio allocation. Finally, we perform some robust-
ness checks on the performance of ADECO.

4.1. Are the relationships between energy and stock returns
asymmetric?

We consider the two-block ADECO in which the first block
contains nearby contracts of three energy futures and the second
block contains stock indices. Table 3 reports the estimation results
of ADECO for energy futures and stocks in oil-importing countries,
as well as results for oil-exporting countries. We can find that the
parameter b in each case is greater than 0.9 and highly signifi-
cant, suggesting the persistence in correlations between energy and
stock returns. The asymmetry parameter g is also significant at 10%
level in each case, indicating that the energy-stock correlations are
asymmetric for both oil-importing and oil-exporting countries. In
our sample period, global oil demand replaces supply as the main
determinant of oil price changes. For example, it is well docu-
mented in the literature that the oil price increases from 2003 to
mid-2008 are driven by high oil demand in emerging economies
such as China and India (Hamilton, 2009; Kilian, 2009). The global
economic depression triggered by financial crisis in mid-2008-2009
is also considered as a typical demand shock which resulted in a
large crash in oil prices. It is intuitive that the expansion of the
economy can stimulate both crude oil and stock prices. For oil-
importing countries, increases in oil prices can also lead to higher
industry cost and import cost, which will have negative impacts
on stock markets. These negative impacts can largely offset the
initial positive impacts of economic growth on stock markets as time
goes by (Kilian and Park, 2009; Wang et al., 2013). Differently, the
depression in global oil economic activities leads to both decreases
in oil and stock prices. However, the marginal effect of oil price
decrease on economies is not as large as the marginal effect of oil
price increase in magnitude (see, e.g., Mork, 1989; Hamilton, 1996)

and therefore cannot offset the negative impacts of economic depres-
sion. In this sense, the asymmetric relationships between returns of
crude oil and stocks are observed.

Figs. 4 and 5 show the conditional correlations calculated from
ADECO for returns of oil and oil-importing country stocks and for
returns of oil and oil-exporting country stocks, respectively. It is intu-
itive that correlations within energy futures block are much higher
than correlations within the stocks block. The reason is that gasoline
and heating oil are the refined products of crude oil. Price changes
of these three energy commodities share a large component that
is affected by the same supply and demand shocks. We can also
find that the correlations of stock returns in oil-importing coun-
tries are always higher than those in oil-exporting countries. The
plausible explanation is that some geopolitical events (such as the
second Gulf War, “Arab Spring” and Venezuela Strikes) occur in oil-
exporting countries more frequently, leading to structural breaks
in stock prices and therefore lower comovement of stock returns.
Furthermore, the correlations between energy and stock in both
oil-importing and oil-exporting countries are positive most of time.
This is because the global economic activity drives oil and stock
prices to change in the same direction. Oil-stock correlations for
oil-exporting countries are stronger than for oil-importing countries
most of time. The plausible explanation is that these oil-exporting
economies depend on oil trading more heavily and oil price shocks
thereby have greater effects on their stock markets (Wang et al.,
2013).

4.2. Portfolio exercise

We have used ADECO to reveal the asymmetry in the energy-
stock relationships from in-sample analysis. In comparison with in-
sample performance, market participants are more concerned about
out-of-sample performance because they would like to know how
well they can do by using this model in the future. To find the role of
asymmetry out-of-sample, we compare the performance of ADECO
with three alternative strategies which are Engle and Kelly (2012)’s
DECO, Engle (2002)’s DCC amd Cappiello et al. (2006)’s ADCC models.
These three strategies have been widely applied in empirical studies.
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Fig. 4. Equi-correlations for returns of energy futures and stock indices in oil-
importing countries.

To evaluate the out-of-sample performance in an economically
meaningful way, we follow Engle and Kelly (2012)’s methodol-
ogy by using out-of-sample covariance forecasts to form minimum
variance portfolios. A superior forecasting model should provide
portfolios that display lower variances than portfolios formed based
on competing models. Consider a collection of n assets with covari-
ance matrix, the minimum-variance (MV) portfolio weights are the
solution to the problem,

rrcluinw’[wat s.t, oy =1. (21)
t

The optimal weights can be written as,

o = Lfn (22)
tH by

More strictly, Eqgs. (21) and (22) provide solutions for optimal
weights for a global minimum-variance (GMV) portfolio. The mini-
mum variance (MV) portfolio is subject to one additional constraint,
involving unknown expected returns. That is,

o'V >q, (23)

where @ and v denote vectors of weight and the expected return,
respectively; q is pre-specified at least achievement level of expected
return.

Unfortunately, Merton (1980) pointed out that it is difficult to
estimate expected returns than covariance matrix from historical
data, and the errors from estimates of expected returns have a larger
impact on portfolio weights than that from estimates of covariance
matrix. To avoid the impact of expected returns, recent most papers
have adopted global minimum-variance (GMV) to investigate their
performance of portfolio (DeMiguel et al., 2009; Jin and Maheu,
2012), so do we in this paper.

Our forecast experiment is executed as follows. We use the
weekly returns of stock and energy returns for the estimation win-
dow of M weeks (M = 400 in our case, i.e., about 8 years). First,
we use the returns for the first M weeks to estimate the param-
eters of univariate volatility models (i.e., GJR model). Second, we
use parameter estimates of univariate volatility models to construct
one-step-ahead volatility forecasts for each of stock and energy
returns.Third, we use the standardized residuals from the first step
to estimate the dynamic correlation model. Forth, we use the param-
eter estimates for the dynamic correlation model to form correlation
forecasts. According to the basic assumption of DECO, the correla-
tion between two asset returns within the same block is the same
and the correlation between two asset returns in two different blocks
is also the same at one specific time point but changes over time.
We thereby need 3 correlation forecasts for two-block ADECO at
each time point. Fifth, we combine correlation forecasts and volatility
forecasts to construct the forecasts of full covariance matrix in Week
M + 1. In the same way, we employ the observations from Week 2
to Week M + 1 to obtain covariance forecast in Week M + 2. This
procedure is repeated until data through August 26, 2015, resulting
in T — M forecasts of covariance matrix. The covariance forecasts are
used to determine the ex-ante optimal weights via Eq. (22) and the
realized returns of optimal portfolio are then available accordingly.

We consider two portfolios with different assets and the weights
of individual assets in each portfolio are determined by covariance
forecasts. The first portfolio contains stock indices only (Portfolio I)
and the second portfolio contains both energy futures and stocks
(Portfolio II). The performances of these two portfolios formed by
different models are reported in Table 4. We use the Diebold and
Mariano (1995) test to examine whether the differences of two port-
folio variances are statistically significant. For each given model, the
portfolio II presents lower variance than portfolio I, regardless of
whether oil-importing or oil-exporting countries’ stocks are used.
This result indicates that adding energy futures to stock portfolio
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Fig. 5. Equi-correlations for returns of energy futures and stock indices in oil-
exporting countries.



462 Z. Pan, Y. Wang, L. Liu / Energy Economics 56 (2016) 453-463

can reduce its variance. The optimal portfolio for energy futures and
stocks in oil-exporting countries has lower variance than the port-
folio for energy futures and stocks in oil-importing countries. Such
finding implies that oil-exporting countries stock market can bet-
ter hedge energy risk. ADECO model results in the portfolio with
significantly lower variance than each of the other three models,
suggesting the best out-of-sample hedging performance. Moreover,
ADECO and ADCC can provide portfolios with lower variance than
portfolios formed based on DECO and DCC models, respectively.
Moreover, the DM test results show that the differences between
out-of-sample performances of ADECO (ADCC) and its symmetric
counterpart are significant at 10% level in most cases. This result
suggests that considering asymmetric oil-stock relationships can
improve the performance of hedged portfolio.

Our main empirical analysis is performed based on nearby
futures contracts. For robustness, we also consider the other three
futures contracts. We show the performances of portfolios formed
by ADECO, DECO, ADCC and DCC in Table 5 when these alternative
futures contracts are used. We can find that the effects of futures
maturity on portfolio performances are minor. More importantly, our
two findings that stocks in oil-exporting countries can better hedge
energy price risk and that ADECO performs better than the other
three models out-of-sample still hold consistently. Therefore, we can
conclude that our main empirical results are robust to the changes of
futures maturity.

5. Conclusions

In this paper, we extend Engle and Kelly (2012) DECO model by
introducing an asymmetric variable. The proposed asymmetric DECO
(ADECO) model is used to investigate the relationships between
petroleum and stock returns, the issue which is of great interest for
academics in recent years. We employ futures contracts of crude oil
and its refined products (e.g., gasoline and heating oil) and stock
indices in 11 oil-exporting countries and 12 oil-importing countries.
We find the significant asymmetric effect in oil-stock relationships.
Their correlations are positive most of time and are stronger for
oil-exporting countries than for oil-importing countries. To evaluate
the out-of-sample performance of ADECO, we consider a portfolio
with energy futures and stock indices in which the optimal weights
are determined by forecasts of covariance matrix in the minimum-
variance framework. We find that ADECO can provide portfolios with
lower variance than DECO and DCC models. Moreover, stock indices
in oil-exporting countries can better hedge oil price risk than stock
indices in oil-importing countries.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.eneco.2016.04.008.
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