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1. Introduction

As a crucial raw material in the iron and steel industries, coke has
been fueling the engine of China's economic boom economy for the
past decade. Domestic coke consumption in China surged from around
108 million metric tons (MMTs) in 2000 to around 469 MMTs in 2014,
and production increased dramatically from 122 MMTs in 2000 to
480 MMTs in 2014 (China Energy Statistics Yearbook, 2015). Various of-
ficial public sources have reported that China is the world's largest con-
sumer and producer of coke.

Following the rapid increase in the consumption and production of
coke, China launched coke spot and future markets in 2009 and 2011,
respectively, to facilitate coke trading, inventory management, and,
more importantly, risk hedging for domestic coke users and producers.
However, due to its immaturity, the coke market is very speculative,
thus indicating that the coke price is very sensitive and vulnerable to
market shocks. Accordingly, understanding the relationship between
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the domestic coke price and its related risk factors is particularly impor-
tant for risk management of the coke price.

According to the Energy Information Administration, 2014, China's
coal mines primarily produce bituminous coal and fair amounts of an-
thracite and lignite. These elements make up steam coal, which is main-
ly used to generate electricity and produce heat in the industrial sector,
and coking coal, which is primarily used to produce coke for iron
smelting and steel production. Due to its close relationship with these
production processes, the coke industry is reported to be the third larg-
est coal consumer in China after the power generation and manufactur-
ing industries (Huo et al.,, 2012), and the coal price is a primary
determinant of the coke price. At the same time, given that coke is an in-
dispensable raw material in iron and steel production, the production
capacities of the iron and steel industries are another main factor in de-
termining the coke price. Moreover, the Coke Manual (2011) published
by the Bohai Commodity Exchange (BCE) points out that coke invento-
ries and domestic macro fundamentals should also be considered when
analyzing the coke price.

However, with China's integration into the world energy market, it is
evident that domestic risk factors cannot provide the complete risk pat-
tern for the coke price. The high correlation between the world oil and
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coal prices since 2008 and China's dominant role in importing interna-
tional oil and coal has been greatly emphasized in the literature (Yang
et al., 2012; Zaklan et al., 2012). These factors have also aroused the at-
tention of domestic coke users and producers on world energy price dis-
turbances. As the benchmark in the world energy market, the crude oil
price is generally regarded as more volatile than other energy products,
and is considered to be the best candidate for the risk transmission to
other markets (Regnier, 2007; Lautier and Raynaud, 2012). The external
risk factor of the world oil price is especially highlighted in the Coke
Manual. Nonetheless, in sharp contrast to the abundant data analyses
on domestic risk factors, thus far, there has been no related analysis of
the relationship between China's coke price and the world oil price.

Furthermore, the ongoing financialization of commodities, the ad-
vent of the 2008-2009 global financial crisis, and the subsequent global
economic slowdown have been accompanied by extreme movements
in oil prices, which have attracted the attention of market participants
worldwide. In recent years, the price of oil has fluctuated at levels that
have not been observed since the energy crisis of the 1970s. For exam-
ple, the price of WTI (West Texas Intermediate) crude oil rose from 37
dollars per barrel to a historic maximum of 145 dollars per barrel from
the beginning of 2003 to mid-2008, and then decreased sharply to 33
dollars per barrel at the end of 2008. Following a mild upward price
trend throughout 2009, the price promptly rose from 80 dollars per bar-
rel to almost 100 dollars per barrel at the end of 2010 and into 2011. Re-
cently, weak economic growth coupled with surging U.S. production
and OPEC's decision to not cut oil production caused the oil price to col-
lapse to around 40 dollars per barrel from about 105 dollars per barrel in
June 2014. Notably, significant fluctuations have been observed in other
energy markets, such as coal, electricity, natural gas and refined petro-
leum, along with the dramatic changes in the world oil price. The liter-
ature has mostly analyzed such extreme market conditions using
uncertain macro fundamentals, fads, and herd behavior, and empha-
sized that they can impose non-negligible effects on investment deci-
sions and macro policy making (see Ghorbel and Travelsi, 2014; Joéts,
2014; Tong et al., 2013; Yang et al., 2012, among others). This further
motivates us to examine the relationship between China's coke price
and the world oil price, especially in light of the extreme movements
in the oil price.

In addition to revealing the implications of risk management for
coke users and producers, uncovering the relationship between
China's coke price and the world oil price, especially with respect to
the extreme oil price fluctuations, is expected to assist domestic policy
makers in regulating the market risk, facilitate the development of the
domestic energy-related markets, improve the asset pricing of domestic
energy products, and help adjust energy policies to reduce China's
heavy reliance on imported oil.

To this end, we use an autoregressive conditional jump intensity
(ARJI) model with the GARCH process to describe the world oil price
and China's coke market, given its speculative characteristics, thus
guaranteeing that the jumps in the oil and coke prices will be captured.
In particular, we add the world oil price jump intensity and the negative
and positive returns of the oil price into the mean equation of China's
coke returns to comprehensively investigate the effect of world oil
price shocks on China's coke price. In addition to focusing on the effect
of extreme oil price shocks (oil price jump intensity) on China's coke
price in average conditions, we further investigate how the commodity
prices co-move in extreme market cases. Then, using the estimates from
the ARJI-GARCH models, we apply diverse copulas (including the static
and time-varying Gaussian copula, Student-t copula, Clayton copula and
its rotation, and Gumbel copula and its rotation) to further examine the
dependence structure of coke and oil.

The main findings of this paper, which are based on a daily spot sam-
ple of China's coke price and the WTI price from 2009 to 2015, are sum-
marized as follows. First, extreme jumps are evident in both the world
oil price and China's coke price, thus confirming that they are not only
characterized by GARCH volatility but also by jump behaviors. Second,

negative oil price shocks lead to falls in China's coke returns on the fol-
lowing day, while the effect of positive oil price shocks is insignificant.
China's current coke returns also positively react to the very recent
jump intensity in the world oil price, while the two-day lagged oil
price jump intensity has no significant effect. Third, there is time-
varying and volatile lower tail dependence between the world oil
price and China's coke price, indicating co-movements in their extreme
negative returns.

The remainder of this paper is organized as follows. Section 2 provides
a brief overview of China's coke trading market. Section 3 presents the lit-
erature review. The methods, including the ARJI-GARCH model and cop-
ulas, are introduced in Section 4. The descriptive statistics of the data and
the empirical results are presented in Sections 5 and 6, respectively.
Section 7 concludes the paper and presents the final discussion.

2. China's coke trading market

Spot trading on China's coke market was launched on the BCE on De-
cember 18, 2009 with the purpose of facilitating coke trading, inventory
management, and price risk hedging. To maintain continuous spot
transactions, the BCE is structured on the basis of a daily delivery de-
clare and delay delivery compensation system. Similar to futures trad-
ing, the continuous spot trading system allows traders to hold short
positions and uses the T + 0 transaction mechanics. However, different
from futures trading, spot trading requires a higher margin ratio of 20%
of the contract value. The tick size and trading unit are set at RMB 2/MT
and 1 MT, respectively. The daily price limit is +/— 8% of the guided
price on the first listing day, whereas after that date it is +/— 8% of
the last settlement price. Coke spot trading is based on the physical de-
livery and the trading hours are divided into three sessions: 19:00-
3:00, 9:00-11:30, and 13:30-16:00 (all Beijing time).!

To better hedge the risk of the coke price, a coke futures market was
subsequently launched on August 15, 2011 on the Dalian Commodity
Exchange (DCE). Coke futures trading requires a minimum margin
ratio of 5% of the contract value. The tick size and trading unit are
RMB 0.5/MT and 100MT/contract, respectively. The daily price limit is
set to be 4% of the last settlement price. The expiration day of a coke fu-
tures contract is the second day after the last trading day of the delivery
month (coke contracts are monthly contracts, comprising of 12 con-
tracts per year, and the last trading day is the tenth trading day of the
delivery month) and is based on physical delivery. The trading hours
for coke futures are divided into two sessions: 9:00-11:30 and 13:30-
15:00 from Monday to Friday (all Beijing time).2

Thus far, three coal-related spots (coke, coking coal, and steam coal)
have been introduced on the BCE. Coke spot trading was introduced
first and has the largest trading volumes, with the daily trading volume
being around 153 thousand MT on average. Coke, coking coal, and
steam coal futures are also traded on the DEC. Like the coke spots,
coke futures were launched earlier than the other two coal-related fu-
tures, and are the most actively traded of the three coal-related futures,
with an average daily trading volume around 399 thousand contracts.
Compared with coke users and producers, speculators and arbitragers
comprise a larger proportion of the participants in the domestic coke
spot and futures markets. Moreover, according to the averaged ratio
of the trading volume and open interest, the coke spot and futures mar-
kets are mainly characterized by speculation.

3. Literature review
As noted above, no studies have empirically examined the relation-

ship between China's coke price and the world oil price. The most

! More details can be found at www.boce.com.
2 More details can be found at www.dce.com.cn.
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relevant studies in this area are concerned with the relationship be-
tween the oil price and the prices of other energy commodities, such
as coal, natural gas, consumer liquid fuel (e.g., diesel, petrol, and heating
oil), and electricity. Among them, the early studies examine the long-
run relationship between the oil price and other energy prices
(e.g., Serletis, 1994; Serletis and Kemp, 1998; Serletis and Rangel-Ruiz,
2004), while the more recent studies focus more on the short-run
links that may lead energy prices to diverge from the long-term equilib-
rium (e.g., Honarvar, 2009; Lescaroux, 2009; Moutinho et al., 2011;
Sensoy et al., 2015; Zavaleta et al., 2015).

In addition to the abovementioned studies, the extreme move-
ments in energy prices (mainly the oil price) have attracted signifi-
cant research attention in recent years. Following Chan and
Maheu's (2002) suggestion that the popular GARCH type model is
designed to capture smooth persistent changes only and is not suited
to explain the large and sudden changes found in asset returns, a
number of subsequent studies began to use their ARJI model to cap-
ture both the volatility clustering and changes in the intensity of ex-
treme movements of energy prices.? For example, Lee et al. (2010)
used a component-ARJI model with structural break analysis to ex-
amine WTI crude oil spot and future price behaviors, and identified
the existence of permanent and transitory components in the condi-
tional variance. Gronwald (2012) used a combined jump GARCH
model to investigate the behavior of daily, weekly, and monthly oil
prices, and verified that oil prices are not only characterized by
GARCH but also by the conditional jump behavior, and showed that a
considerable portion of the total variance is triggered by sudden ex-
treme price movements. Wilmot and Mason (2013) allowed the poten-
tial presence of jumps in the spot and future prices of crude oil, and
found that this consideration can improve the model's ability to explain
the dynamics of crude oil prices.

However, recently, Wang and Zhang (2014) argued that the
abovementioned studies only identify the existence of oil price
jumps and pay little attention to how the jump behaviors in the
crude oil prices affect other markets. To this end, Wang and Zhang
(2014) used the ARJI-GARCH model to examine how jumps in the
crude oil market affect China's bulk commodity prices. Although
Wang and Zhang (2014) represent an important step in modeling
the effect of jump behavior in the crude oil price on other commodity
prices, the issue of how the oil price jumps affect other energy com-
modity prices remains unclear.

Nonetheless, in line with the increasing attention being paid to the
extreme risks in energy prices, an emerging stream of literature has
been focusing on the co-movements between the oil price and other en-
ergy prices under extreme market circumstances. For instance, Joéts
(2014) showed that energy (oil, gas, coal, and electricity) price co-
movements increase during extreme fluctuations and that this tenden-
cy appears to be stronger during bear markets. Using weekly data on

4. Methods

4.1. ARJI-GARCH model for the world oil price and China's coke price

WTI crude oil, heating oil, gasoline, and natural gas prices, Koch
(2014) suggested that tail events across energy markets cannot only
be explained by the real demand fundamentals, but also by the changes
in the net long positions of hedge funds and the TED spread. Tong et al.
(2013) found that crude oil and refined petroleum prices tend to move
together during market upturns and downturns, while Aloui et al.
(2014) reported that crude oil and natural gas prices tend to co-move
closely in bullish periods but not during bearish periods. After examin-
ing the tail distribution patterns and tail dependence of the price returns
of WTI oil, natural gas, and heating oil prices, Ghorbel and Travelsi
(2014) further provided acceptable VaR (value-at-risk) estimates of en-
ergy portfolios for investors. From this perspective, in addition to quan-
tizing the effects of extreme movements in one energy price (mainly the
oil price) on other energy commodity returns in normal time, it is nec-
essary to model their extreme co-movements and to examine the ex-
treme risk of energy prices.

In terms of modeling the extreme co-movements of asset returns,
copula functions have proven to be a very advantageous approach. Spe-
cifically, without using discretion to define extreme observations, copu-
la functions can exhibit diverse patterns of market tail dependence.
Moreover, without assuming multivariate normality while based on
the marginal distributions, copulas have great suitability and flexibility
in building the joint distribution of asset returns (Wen et al., 2012).
Among the above studies, Tong et al. (2013); Aloui et al. (2014), and
Ghorbel and Travelsi (2014) used copulas to examine the extreme co-
movements between the oil price and other energy commodity prices.
Overall, an increasing number of studies have applied copulas to study
energy markets in recent years (see Aloui et al., 2013a; Aloui et al.,
2013b; Chang, 2012; Reboredo, 2011, 2013, 2015; Wen et al., 2012;
among others).

This paper extends the existing research in the following two dimen-
sions. First, we attempt to fill the current research gap by investigating
the relationship between the world crude oil price and China's coke
price. Second, because the effect of crude oil price jumps on the returns
of other energy commodity prices in normal time remains under-
researched, and extreme co-movements between energy prices is an-
other necessary dimension of the extreme risk of energy prices, we
combine the ARJI-GARCH model and copula functions to measure the
relationship between China's coke price and the world oil price. To the
best of our knowledge, few recent studies have used this approach in
energy market contexts. The only exception is Chang (2012), who in-
vestigated the dependence between the crude oil spot and futures mar-
kets using the mixed copula-based ARJI-GARCH model. Hence,
following Chang (2012), we use more diverse copula functions, namely,
static and dynamic copulas of the Gaussian, Student-t, Clayton and its
rotation, and Gumbel and its rotation, which are expected to more
fully describe the relationship between China's coke price and extreme
changes in the world crude oil price.

The ARJI model proposed by Chan and Maheu (2002) allows us to simultaneously consider the persistence in the conditional variance and jump
behavior in asset prices. The ARJI model combined with a GARCH process for the world oil price is given as follows:

ne
hoil,tzail‘t + Z Yoil,[.,lu

k=1

I
Roite = Hoit + > PoitRoite—i +
i1

Zoite ~ NID(0, 1), Yoj gk ~ N<00i17 501‘12)7

)

2)

3 Although the ARJI model has been widely used in traditional financial markets (e.g., Chen and Shen, 2004; Chiou and Lee, 2009; Daal et al., 2007), its application to energy prices is still

emerging.
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where Eq. (1) is the conditional mean equation of the world oil return Ry;, L is the constant term, and ¢,;,;{i = 1,2,...1} is the coefficient of the AR pro-
cess. To complete the conditional volatility dynamics for returns, hy;, follows a GARCH (p, q) process (Bollerslev, 1986), which is given by:

q p
2
hoite = o + Y Coiti€oitf—; + Y Boitifoite—i» (3)
i1

i=1

where, following Chan and Maheu (2002), &y, = Ro,“—yoﬂ—ZL]%-,_’,‘RO,-LH. The specification of &, contains the expected jump component, thus
allowing it to propagate and affect future volatility through the GARCH variance factor.

In Eq. (1), the conditional jump size Y, is assumed to be normally distributed with a mean 6,; and variance 2; given the history of returns
It —1 = {Roitt—1, Roite—2.... Roir,1}- n¢ is the discrete counting process governing the number of jumps that arrive between time t_1 and ¢ in the
world oil price, which follows a Poisson distribution with the parameter A,;; > 0 and density:

exp(—Noi) Noit !

P(n[:.”’t—l): ] ]:0,]72 (4)

where A, is the jump intensity and implies the conditional expectation of the counting process under I; . Ay is assumed to follow:

Noitt = Noito + Poit 1 Noite—1 + Poit28oil —15 (3)

where Ayijo > 0, Poir1 > 0, Poir2 2 0; Eyie—1 is the jump intensity residual, which is calculated as:

gou,r_1 = E[ng1li—1]—Noitg—1 = ij(”t—l = jle—1)—Noitr—1- (6)
=0

Having observed R,;; and using the Bayes rule, the ex-post probability of the occurrence of j jumps at time ¢ can be inferred and is defined as:

f(RoiL,t\nt =], Ir—1)P(nt = jll-1)
P(Roit|le—1)

and the log likelihood function of the ARJI-GARCH model for the world oil price can be written as follows:

P(n; = jiI,) = j=01,2,... (7)

T
L(@) = In[P(Ryiieln = j. )], 8)
=1
P(Roil.t“t—l) = Zf(RoiLtmt :]'Jt—l)P(nt =jlli-1), j=0,1,2,... 9)
j=0

where T is the sample size and @ represents all of the parameters to be estimated.
As for China's coke price, we still use the ARJI-GARCH model to describe the conditional variance and jump behavior in prices. To fully examine the
potential effect of the world oil price, the conditional mean equation of China's coke price is given by:

1 m w s ne

Rcoke.t = Heoke + Z d)coke.iRcoke,tfi + Z kliPRoil,tfi + Z kZiNRoil,tfi + Z di)\oil,tfi + hcoke.tzwke,t + Z YCOkE.f,k7 (10)
i=1 i=1 i=1 i=1 k=1

Zeoke,t ™~ NID(O, 1)7 Ycoke.[‘k ~ N<9cokev 6coke2)a (11)

where P_R,;;; = Max(R,, 0) is defined as a positive oil price shock while N_R,;; = Min(R,;, 0) is a negative oil price shock. A,;; ¢ is the jump intensity
of the oil price, which allows us to determine how China's coke returns are affected by the jump behavior in the world oil price.
The heoke, still follows a GARCH (p, q) process as in Eq. (3), with the parameters of W¢oke, Qcoke, AN Beoke- However, the specification of goke  iS

Presented aS:€coket = Rcoke‘t —Heoke — Z ﬁ:l d)coke,iRcoke‘t—i - Z ?;1 kliPRoil.t—i - Z:il kZiNRoil.t—i - Z?:l di)\oil‘t—i

As with Yy, the conditional jump size Yyoe of Eq. (10) is assumed to be normally distributed with a mean 6,0, and variance 62, given the
history of returns I; _1 = {Rcokest —1, Reoke.t —2.... Reoke,1}- Here, n, is the number of jumps arriving between time t_1 and t in the coke price, which
follows a Poisson distribution with the parameter Acoe > 0 and the density is in the same form as Eq. (4). The jump intensity of the coke price Acoke
follows the ARMA(1, 1) process as in Egs (5) and (6), although with the parameters Acoke0 > 0, Peoke,1 > 0, Peoke2 2 0, and the jump intensity residual
gmke,tf 1.

With the observed R and the Bayes rule, the ex-post probability of the occurrence of j jumps at time t can also be inferred and is given by a
formula similar to Eq. (7).* The log-likelihood function of the ARJI-GARCH model for the coke price can be written as follows:

T
L(®) = In[P(Regkesln = j, P)], (12)

t=1

4 For the coke price, Roiir needs to be substituted with Repe in Eq. (7).
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P(Rcoke,t“tfl) = Zf(Rcoke,t‘n[ :jaltfl)P(nt :J'Ur—l)a j: O, 1127--- (13)
=0

where T is the sample size and & represents all of the parameters to be estimated.

Finally, it should be noted that to stress the important effect of the oil price, especially the effect of the oil price jump intensity, we also estimate a
number of basic models for the Chinese coke price in the empirical analysis section, including the ARJI-GARCH model without any oil price effect,
ARJI-GARCH model with the effect of lagged oil returns, and ARJI-GARCH model with the asymmetric effect of lagged oil returns.

4.2. Copulas

In Section 4.1, we showed that the effect of the jump behavior in the oil price (i.e., the intensity of extreme oil price movements) on coke returns in
average conditions can be examined based on Eq. (10). However, to further investigate how the two commodities co-move in extreme cases, we use
copula functions.

According to Sklar's theorem, copula functions are a very convenient tool for building a multivariate distribution for assets with any choice of mar-
ginal distributions for each individual asset. Concretely, a two-dimensional joint distribution function G with continuous marginal distributions Fx
and Fy can be given by G(x, y) = C(Fx (x), Fy(y)). Thus, the joint distribution function is given by the marginal distributions (the cumulative distri-
butions for each individual asset) and the dependence structure is described by a copula function. As a density function, the above function can be
written as g(x, y) = fx (x)-f,(¥)-c(Fx (x), Fy(y)), with f being the probability density function of the marginal distribution of the asset price and ¢
being the copula density.

Based on Chan and Maheu (2002), the adequacy of the ARJI-GARCH model should not only be examined by investigating whether there is serial
correlation in the standardized residuals and the jump intensity residuals, but also by checking whether the cumulative function of the individual
asset returns is uniform (0, 1). The cumulative functions for individual assets are required for copula functions, and whether they are uniform (0,
1) needs to be verified before introducing the copula functions.” Under the ARJI-GARCH model, we can obtain the marginal distributions for the
world oil price and China's coke price, Fyii(Roir¢) and Feoke(Reoke,)- Setting Foil(Roire) = trand Feore(Reoker) = Vi, the distributions are obtained as follows:

ur = Foit(Roitelle—1) .
= ijop(nt :J.“t—l)ffgé[f(RoiLtmt =] Ir—l)
© . 1

=2 ioP(ne = jllc—1) i . —

2n (hoil,t + Jﬁﬁu) (14)

I ;
(RoiLt —1—2_i_1DoitiRoit ¢—i —901‘1]>
X exp | — — ,
2 (hoil,r + ]bm‘z)

Ve = Feoke (Rcokeﬁtutfl)

- ijop(nt = j“t*l)/ if(kae‘tmt =], 1[71)

. ) Reoke.t 1

2m (hmke,t + jﬁgoke) (15)
I 5 .
(Rcoke.t _”_Zizl qﬁmke‘ikae,tfi _Z:n:1 kliP—Roil.tfl - Z:il kZiN-Roil,tfl - Z di)\oil,tfi _ecoke]>
i=1

X exp|— -
2 (hcoke,t + J‘Sgoke>

We perform the Kolmogorov-Smirnov (K-S) test and Anderson-Darling (A-D) test to examine whether u; and v, from ARJI-GARCH are uniform
(0, 1). These tests are discussed in the empirical section. Then, G(Ryii, Reoke,) = C(Us, v¢) and its density function is g(x, ¥) = P(Roiis) * P(Reoke,r) - C(Us, Ve).

In addition to being able to build more effective multivariate distributions, copula functions exhibit diverse patterns of tail dependence between
markets, which is another obvious advantage and the main purpose of using them in this analysis.

The lower and upper tail dependence between markets are respectively defined as follows:

N(v) = limP[X<Fy (V< Fy ' (v)] = lim C(“’/’ v (16)

1-2v+C(v,v)

1—v (17)

Ay(v) = limP [Xz F'(v)|Y2Fy! (v)] = lim
v—1 v—1

Eqs (16) and (17) give the probability that an event with probability lower than v occurs in X, given that an event has occurred with probability
lower than v in Y. C(.) is the cumulative distribution function of the copula. If A; is close to one, it indicates that both returns have extreme negative

values and the degree of co-movement in negative extremes is large, whereas if A; is close to 1, it implies that the degree of co-movement in positive
extremes is large.

5> Assuggested by Patton (2006), if a misspecified model is used for the marginal distributions, then the probability integral transforms will not be uniform (0, 1) and any copula model
will automatically be misspecified.
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(ﬁ) WTl returns (b) Coke returns
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Fig. 1. Returns for the world oil price and China's coke price.

In this paper, we use several popular copula functions that emphasize tail dependence, including the Student-t copula, the Clayton copula and its
rotation, and the Gumbel copula and its rotation. The Gaussian copula, which is the benchmark copula in economics, is also considered.
Considering that the tail dependence is potentially time-varying, the parameters in these copula functions follow the process of ARMA(1, 10) as

proposed in Patton (2006):

1 10
Wi = A(% + Wy wszluf_i—vt_n),
i=1

(18)

where W, stands for the related parameter of a copula function. Additional details of the copula functions used in this paper and their evolution are

described in Appendix A.

We first obtain the parameters of the marginal distribution (ARJI-GARCH) of each asset return. Then, based on the two-stage estimation proce-
dure proposed by Joe (1997), in the second stage, the parameters of the copulas are obtained by solving the following problem:

T
@, = arg max ; Inc(iy, v; @).

where @, are the copula parameters.
5.Data

We use the spot price of coke traded on the BCE and use the WTI spot
oil price to represent the world oil price, as the WTI crude oil price is one
of the benchmarks in the world oil market. To measure the relationship
between the world oil price and China's coke price more accurately, the
exchange rates are used to convert the nominal dollar price of oil to the
Chinese yuan price. Due to data availability, the daily sample covers De-
cember 18, 2009 to April 30, 2015.° China's coke price data are obtained
from the trading software of the BCE. The WTI spot data are from the IEA
and the exchange rate data are from the Federal Reserve Bank of St.
Louis. The asset returns are calculated as 100 times the difference in
the log of prices.

Fig. 1 presents the daily returns of each asset. Clusters of significant
WTI return volatilities can be found from 2010 to the middle of 2012
and then much greater volatilities are observed from the end of 2014
to the end of the sample. For China's coke price, the return volatilities
were relatively low between 2011 and mid-2012, while greater volatil-
ities emerged during the first half of 2010 and from mid-2012 to the be-
ginning of 2014. In sharp contrast with the large volatilities of WTI
returns from the end of 2014 to the end of the sample, China's coke
returns show little variation during this time.

5 The daily trading data for China's coke spot market begins from December 18, 2009. As
the trading data for coke futures are still very limited, we do not use these future data in
this paper.

(19)

Table 1 provides the descriptive statistics. The sample mean of
China's coke returns is smaller than that of WTI returns while the WTI
return variations are larger than those of China's coke returns. More-
over, all of the asset returns are left skewed and have excess kurtosis,
implying that the probability of extreme negative price changes is larger
than that of extreme positive changes, and together with the Jarque-
Bera test, suggesting a non-normal distribution for asset returns. Finally,
the Ljung-Box statistics suggest the presence of serial correlation in
(squared) returns.

Table 1
Descriptive statistics.
WTI Coke

Mean —0.024 —0.048
Std. 1.916 1.297
Skewness —0.183"" —0.685™"
Kurtosis 3.528"" 6.598"""
J-B 673.475"" 2429750
Q(15) 18.034 37.409""
Q2(15) 337.355"* 74.778"*

Notes. Daily observations are for the period of Dec. 21, 2009 to Apr. 30, 2015. The Jarque-
Bera (J-B) statistic tests for the null hypothesis of normality in the sample returns distribu-
tion. The Q (15) is the Ljung-Box Q test of serial correlation of up to 15 lags in the returns.
*** ¥ indicate statistical significance at the 1%, 5% and 10% level respectively.

v
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Table 2
Estimates of ARJI-GARCH model.
i=WTI i = Coke (A) i = Coke (B) i = Coke (C) i = Coke
1 0.062 —0.050"" —0.048"" —0.017 —0.025
(0.048) (0.021) (0.020) (0.030) (0.036)
i —0.050" 0.008 0.002 0.002 0.006
(0.029) (0.027) (0.027) (0.027) (0.025)
k 0.046***
(0.010)
k11 0.023 0.018
(0.020) (0.019)
ka1 0.064*** 0.065***
(0.016) (0.016)
d; 0.409**
(0.190)
d, —0.337
(0.239)
; 0.016" 0.011 0.007 0.007 0.008
(0.010) (0.009) (0.005) (0.005) (0.006)
o 0.034™* 0.033" 0.025™ 0.026™ 0.029™
(0.010) (0.018) (0.010) (0.010) (0.011)
Bi 0.947"* 0.874™" 0.902"*" 0.900™* 0.888"*"
(0.014) (0.063) (0.036) (0.034) (0.040)
0; —0.823" —0.095 —0.095 —0.104 —0.098
(0.361) (0.101) (0.102) (0.119) (0.105)
8% 7.119™" 2.996™" 3.035"" 3.091™* 3.077""
(0.564) (0.174) (0.168) (0.166) (0.156)
Nio 0.061* 0.208"™ 02117 0.209"* 0.210"*"
(0.032) (0.082) (0.075) (0.074) (0.076)
Dia 0.505""* 04217 0.409™ 0.401™" 0.400™"
(0.177) (0.209) (0.188) (0.192) (0.193)
Piz 0.680"" 0.403" 0.457"" 0.445™" 0.398"*"
(0.290) (0.175) (0.165) (0.155) (0.153)
Log-likelihood —2475.637 —1863.337 —1851.901 —1850.931 —1846.635
Q%(15) 0.146 0.402 0.495 0.493 0.524
Qg (15) 0.186 0.654 0.606 0.619 0.590
K-S 0.389 0.803 0.590 0.542 0.285
A-D 0.681 0.432 0.482 0.497 0.483

Notes. This table provides parameter estimates of marginal distribution models with standard errors in parentheses. Q? is the modified Ljung-Box portmanteau test, robust to
heteroscedasticity, for serial correlation in the squared standardized residuals with 15 lags for the respective models. Q¢; is the same test for serial correlation in the jump intensity resid-
uals. Parameters of marginal distribution model of ARJI-GARCH for WTI price and China's coke price can refer to Eqs (1) to (5), Eqs (10) and (11). k in Coke (B) is the coefficient of lagged oil

price returns. ***, **, * indicate statistical significance at the 1%, 5% and 10% level respectively.

The significant effect of the world oil price on China's coke price and the highest log-likelihood value are written in bold.

6. Empirical results
6.1. Estimates of the ARJI-GARCH model

Table 2 shows the estimates of the ARJI-GARCH models for returns
of the world oil price and China's coke price. Following Chan and
Maheu (2002) and Chang (2012), the number of jumps is set to 20
for all of the models. The number of lags in the conditional mean
equation is selected based on the BIC (Bayesian information criteri-
on), which is known to lead to a parsimonious specification (Beine
and Laurent, 2003). Following the literature (e.g., Chan and Maheu,
2002; Chang, 2012; Wang and Zhang, 2014; Wang and Zhang,
2014), orders p and q of the GARCH process are both specified as 1.

As the misspecification tests show, the null hypothesis of no serial
correlation in the squared standardized residuals (jump intensity resid-
uals) cannot be rejected in all models. In addition, the p-values for the K-
S test and A-D test indicate that the probability integral transforms are
uniform (0, 1). Hence, the ARJI-GARCH model for the world oil and
China's coke returns adequately describes their marginal distributions
and the copulas can accurately capture the co-movement between the
world oil price and China's coke price.

The estimates of the ARJI-GARCH model for WTI returns are shown
first. In the conditional mean equation, the coefficient ¢,;1 is negative
and statistically significant, indicating that WTI returns are negatively

7 According to Brooks (2008), because a GARCH family model with 1 lag order can suf-
ficiently capture the volatility clustering in assets returns, few financial studies have con-
sidered or used the high order model.

related to one lag of their own returns. In the conditional volatility equa-
tion, the coefficients a,; and 3,; are all significant at the 1% level, imply-
ing that the volatility of WTI crude oil returns at time ¢ not only depends
on the volatility at time t — 1 but also on the relevant information at the
same time. As for the jump behavior in world oil prices, the significant
mean 6,; and variance 62,; of the jump size imply that sudden extreme
movements occur with the abnormal news flowing into the world oil
market. The significance of coefficients A0, Poir1, and poir > indicates
that the ARJI model is appropriate to describe the jump behavior in
the WTI oil prices and the values of py; 1 and pe;;» imply that the current
jump intensity Ao, is almost equally affected by the most recent jump
intensity (Aoic—1) and intensity residuals (&pipe—1)-

6.1.1. The effect of the world oil price on China's coke price

To emphasize the role of the oil price, especially that of the oil price
jump intensity, in describing the dynamics of coke returns, some basic
models are estimated in Table 2, which are denoted as Coke (A), Coke
(B), and Coke (C), respectively.

The column denoted Coke (A) of Table 2 shows the estimates of the
ARJI-GARCH model without any oil price effect. The volatility pattern of
China's coke returns is found to be similar to that of world oil returns,
with the coke return volatility at time t depending on both the volatility
and the relevant information at time t_ 1. The significant variance 6%coke
of the jump size implies that sudden extreme jumps are also evident in
China's coke price, and the significant peoke.1 and pPeoke > indicate that the
current jump intensity in China's coke price (Acoke,.) is related to the
lagged coke jump intensity and to past shocks.
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Fig. 2. Jump intensity of the world oil price and China's coke price.

The effect of lagged oil returns is then considered in the ARJI-GARCH
model for China's coke returns. The columns demoted Coke (B) and
Coke (C) show the results of the models with the symmetric and asym-
metric effects of lagged oil returns, respectively. The significance of co-
efficient k in Coke (B) indicates that the current returns of China's
coke price positively respond to the lagged WTI oil returns. Further-
more, in Coke (C), the significance of coefficients k,; and k;; implies
that the current returns of China's coke price are positively affected by
the negative lagged WTI oil returns, and that they are insignificantly af-
fected by the positive lagged oil returns.

Finally, the column denoted by Coke provides estimates from the
ARJI-GARCH model for China's coke returns that considers both the
asymmetric effect of the lagged oil returns and the effect of the lagged
oil price jump intensity. The asymmetric effect of the lagged WTI oil
returns remains in this model. As for the effect of the oil price jump in-
tensity, the significant and positive d; means that the one-day lag of
jump intensity of the WTI oil price (A;,) positively affects China's cur-
rent coke returns, while the insignificant d, implies that the two-day
lag of jump intensity of the WTI oil price does not affect the coke returns.
These results indicate that China's coke price returns only react to the
very recent jump intensities of the WTI oil price. This may be attribut-
able to the speculative Chinese coke market, which is inclined to overre-
act to very recent oil price shocks. Comparing the values of k,; and d;,

the effect of the oil price jump intensity is confirmed as being obviously
stronger than that of the lagged negative oil price returns.

The coefficients in the conditional volatility equation of China's coke
price across the column Coke (A) until the last column are all very sim-
ilar. Given the coefficients of &y, Boi, and Qcokes PBeokes We find that the
volatility clustering in the coke price is weaker than that in the crude
oil price, and the coefficient values of 67 show that the variance in the
jump size in the world oil market is at least twice as large as that in
China's coke market.

In summary, all of the models in Coke (A), (B), (C), and Coke in
Table 2 are adequate for describing the marginal distribution of
China's coke returns (based on the Ljung-Box statistics for squared stan-
dardized residuals and jump intensity residuals, and on the p-values of
the K-S test and A-D test). However, given the significance of the asym-
metric effect of the lagged oil price returns and the effect of the lagged
oil price jump intensity, together with their log-likelihoods, the ARJI-
GARCH model presented in the last column is confirmed as being the
optimal model. Hence, the oil price effect needs to be fully considered
when modeling China's coke price returns.

6.1.2. Volatility patterns of the world oil price and China's coke price
Based on the estimates from the ARJI-GARCH model presented in the
WTI and Coke columns in Table 2, Fig. 2 displays the jump intensities of

(a) Variance of GARCH (WTI) (b) Variance of GARCH (Coke)
15 15
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Fig. 3. Conditional variance of the world oil price and China's coke price.
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Table 3
Estimates of static and time-varying copulas.

Static normal copula TV normal copula

p 0.057™" v, 0.135"
(0.029) (0.077)

w7, 0.315"
(0.190)
vy —0.508
(0.920)

Log-likelihood 2.047 Log-likelihood 3.439

AIC —2.091 AIC —0.860

Static Student-t copula TV Student-t copula

p 0.056" 2 0.094
(0.029) (0.096)
ve 37.015 vy 0.186
(36.644) (0.148)
v, —0.103
(1.482)
Ve 5.000""
(1.000)
Log-likelihood 2.550 Log-likelihood —10.593
AIC —1.091 AIC 29.218
Static Clayton copula TV Clayton copula
v 0.061"" Wy —0.443
(0.030) (1.598)
vy —8.778
(5.638)
v, 0.007
(0.058)
Log-likelihood 2.435 Log-likelihood 3.766
AIC —2.866 AIC —1.532
Static rotated Clayton TV rotated Clayton
copula copula
Y 0.046 Yo —2.984™
(0.031) (1.361)
v, —4.123
(4.030)
v, —0.252
(0.212)

Log-likelihood 1.214 Log-likelihood 1.405
AIC —0.425 AIC 3.191

Static Gumbel copula TV Gumbel copula

v 1.100"* o —1.166
(0.098) (1.908)
v, 0.804
(0.697)
v, 0.701
(1.729)
Log-likelihood —4.935 Log-likelihood 2.664
AIC 11.873 AIC 0.691
Static rotated Gumbel TV rotated Gumbel
copula copula
y 1.100"" Wy —1.519
(0.035) (1.587)
v, 1.044"
(0.606)
v, 0.968
(1.452)

Log-likelihood —4.828 Log-likelihood 3.804
AIC 11.659 AIC —1.589

Notes. The table shows the likelihood estimates of static and time-varying (TV) copulas for
WTI oil price and China's coke price. The standard error values are presented in the
brackets; Akaike Information Criterion (AIC) values adjusted for small-sample bias are
provided for the copula models. The best copula fit is selected based on the minimum
AIC value and the maximum Log-likelihood value. **, **, * indicate statistical significance
at the 1%, 5% and 10% level respectively.

The best-fit static copula and time-varying copula are noted in bold.

the world oil price and China's coke price. The range of the jump inten-
sity variations in the WTI oil price is larger than that in China's coke
price, while the jump intensity value of China's coke price is generally

larger than that of the world oil price jump intensity, indicating that
China's coke market demonstrates more frequent price jump behavior
and much lower efficiency.

Under the ARJI-GARCH model, the conditional variance in asset
returns can be separated into two parts, namely, Var(Rp¢|lne1) =
hpe + (% me + 0?me)Ame (m = oil or coke) (Maheu and McCurdy,
2004). Fig. 3 shows the total variance (Var(Rp¢|Imc—1)), variance in
GARCH (h), and variance in the jump component (6%, + 6%n.6)Am)
) for the world oil price and China's coke price. As shown in this figure,
the total variance in the WTI oil price is much higher than the variance
in China's coke price. Moreover, consistent with Fig. 1, clusters of signif-
icant WTI volatilities are found from 2010 to mid-2012 and even greater
volatilities emerge at the end of 2014, while the clustering volatilities of
China's coke price are higher between mid-2012 and the beginning of
2014. Although smoother, the GARCH variance has the same pattern
as the total variance, thus confirming the importance of taking the
jump behaviors into account when modeling the volatilities of energy
prices. Finally, although the variance in the jump component in Fig. 2
shows that the WTI oil price jump intensity is generally lower than
the jump intensity of China's coke price, it can induce much higher var-
iance than China's coke price jump intensity.

6.2. Estimates of the copulas

The estimates of the copulas in the marginal distribution model for the
world oil price and the optimal distribution model for China's coke price
are reported in Table 3. Given the AIC and log-likelihood, the static
Clayton copula is the best fit for the dependence structure between the
world oil price and China's coke price among the static copula functions.
As for the time-varying copulas, although the parameters capturing the
time-varying dependence are not statistically significant in general,
based on the AIC and log-likelihood, the time-varying copula functions
are still more optimal than the static copulas in most cases. The time-
varying rotated Gumbel copula has the best fitting performance among
the various time-varying copulas, closely followed by the time-varying
Clayton copula. Overall, the two most optimal copula functions are the
time-varying rotated Gumbel copula and the static Clayton copula.

6.2.1. Tail dependence between the world oil price and China's coke price
The time-varying rotated Gumbel copula and the static Clayton cop-
ula both show the existence of lower tail dependence between the mar-
kets but no upper tail dependence. This means that the world oil market
and China's coke market are linked to different degrees under the
downside and upside market circumstances. Notably, the relationship
between the markets is stronger in extremely bad conditions than in
very good conditions. Accordingly, copulas focusing on the symmetric-
tailed dependence are inadequate for describing the link between the
world oil price and China's coke price in extreme market conditions.

6.2.2. Time paths of tail dependence

Fig. 4 depicts the development of the lower tail dependence be-
tween the world oil price and China's coke price according to the two
most optimal copula functions, namely, the time-varying rotated
Gumbel copula and the static Clayton copula. The figure shows that
the lower tail dependence obtained from the static Clayton copula is
very close to zero whereas, in contrast, the lower tail dependence
from the time-varying rotated Gumbel copula is much higher and
more volatile. Because the time-varying rotated Gumbel copula is
more optimal than the static Clayton copula, estimates from the static
Clayton copula would under-estimate the extreme downside risk be-
tween these two markets.

7. Conclusion and discussion

In this paper, using a daily sample of China's coke spot prices and the
WTI spot prices from December 18, 2009 to April 30, 2015, and the
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Fig. 4. Lower tail dependence of the world oil price and China's coke price.

relatively novel ARJI-GARCH-copula models, we find that the world oil
price and China's coke price are characterized by both GARCH volatility
and jump behaviors. Moreover, our results show that negative (posi-
tive) oil price shocks can lead to falls (have no effect) in China's coke
returns on the following day, the lagged jump intensity in the world
oil price can significantly increase China's current coke returns, and
co-movements of the extreme negative returns are time-varying and
very volatile. These results are worthy of further discussion.

A number of potential implications for the risk management of coke
producers and users can be obtained from the empirical results.
(1) Lagged negative oil price shocks lead to falls in the current coke
returns, while lagged positive oil price shocks have no effect on today's
coke returns, implying that coke producers should pay more attention
to negative news about the world oil price. Moreover, the existence of
lower tail dependence indicates that hedging the extreme downside
risk of the world oil price is particularly important. (2) The lagged oil
price jump intensity can significantly drive up the current coke returns
in average conditions, implying that coke users should pay special at-
tention to the jump behavior in oil prices to avoid high use-costs.
(3) However, it should also be noted that although China's coke price
is found to react to the lagged oil price jump intensity, this response ap-
pears to be very short-lived. Specifically, the coke price only reacts to
very recent oil price jump intensity, while the two-day lag of jump in-
tensity of the WTI oil price has no effect on coke prices. Meanwhile,
the lower tail dependence between the world oil price and China's
coke price stays below 0.1 in most cases, even though it is time-
varying and volatile. This indicates that the diversification potential of
world oil futures should be considered when hedging coke price risk.
(4) Because jump behaviors are observed in both the world oil price
and China's coke price, using models that only capture the smooth
GARCH volatility may under-estimate the risk. Similarly, given the vola-
tile lower tail dependence between the world oil price and China's coke
price, static models and models that assume symmetric tail dependence
may also underestimate the risk, leading to reduced hedging efficiency.

Our results also have important implications for policy makers. (1) Ac-
cording to the above discussion, the world oil price is identified as a sig-
nificant risk factor for domestic coke returns. Thus, disturbances in the
world oil price should be considered when pricing domestic coke deriva-
tives. (2) Hedging the world oil price risk is necessary for coke users and
producers, which implies that crude oil futures need to be introduced
along with more energy-related derivatives. However, there are very
few energy-related futures in China at present, as the launch of the
crude oil futures market has been suspended and the coal-related futures
markets are still emerging. Among the emerging coal-related futures
markets, the coke futures market has high trading volumes but remains

very speculative. Accordingly, policy makers need to consider regulating
the speculation risk and maintaining adequate market liquidity. In fact,
gradually lowering the dependence on oil imports by diversifying
China's energy consumption structure is an alternative option to mitigate
the oil price risk in the domestic coke price. (3) The short-lived response
of China's coke price to the oil price jump intensity and their weak lower
tail dependence in most cases motivate us to conclude that domestic fac-
tors may play a more dominant role in affecting the coke price. In other
words, despite China's large energy exports and imports, factors such as
the individual characteristics of energy products and industries, and
domestic macroeconomic fundamentals may largely weaken the rela-
tionship between the world oil price and China's coke price. In practical
terms, because coke is produced from coking coal, and then used for
iron and steel production or other forms of nonferrous metallurgy,
the energy substitution between coke and oil is not direct, whereas
the demand in the iron and steel industries and the coking coal
price are directly linked with the coke price. Moreover, macroeco-
nomic fundamentals play an important role in driving (dampening)
the demand for coke in the iron and steel industries, with rapid
(slow) economic growth, easing (tightening) monetary policy, and
arelatively low (high) inflation rate stimulating (reducing) demand.
In addition, rail capacity, the lifecycles of the iron and steel industries
(e.g., construction, machinery, cars, ships, and railways), and indus-
try regulation policies are also likely to affect the coke price.

The Twelfth Five-Year Plan for Chinese Coal Industry Development
states that coal-based chemical industries should be further promoted
and, according to Yang et al. (2012), the substitution between coal/
coal-based chemical products and oil is going to strengthen. Given
China's ever increasing oil imports, domestic coal and coal-related prod-
ucts are predicted to be more vulnerable to the world oil price. Hence,
the risk factor of the world oil price is worthy of ongoing research atten-
tion. Furthermore, given the speculative nature of the Chinese coke
market, a possible extension of our paper would be to examine how
coke trading activities affect the price nexus of the world oil and domes-
tic coke markets.

Appendix A. Copula Functions
A.1. Gaussian copula

The Gaussian copula is considered to be the benchmark copula in
economics, and is defined by:

Co(urvi:p) = (7" (), >~ (vy)) (A1)
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where @ is the bivariate standard normal CDF with correlation p,
(—1<p<1),and &~ Y(u,) and &~ !(v,) are standard normal quantile
functions. The Gaussian copula features symmetric tail dependence,
Whlle)\U: )\L =0.

A.2. Student-t copula

The Student-t copula is another kind of elliptical copula that is often
used for the dependence structure. Its equation is given by:
Cs(ue, ve: p. V) = T(6 (). £ (v1) (A2)
where T is the bivariate Student-t CDF, with a degree-of-freedom pa-
rameter v¢ and correlation p; (—1 <p¢< 1), and t~ !(u,) and t~ (v,)
are the quantile functions of the univariate Student-t distribution,
with v¢ as the degree-of-freedom parameter.

The Student-t copula also features symmetric tail dependence, while
Ay =N =2ty 1(—VVv+1y/1—p//1+p)>0,wheret, ; {(*) is the CDF
of the Student-t distribution with degree of freedom v + 1, and p is the
linear correlation coefficient.

A.3. Clayton copula and its rotation

The Clayton copula is good at characterizing the asymptotic lower
tail dependence:

Celue, v y) = (max{u ™ +v,"7=1;01) 7", (A3)
while its rotation can well consider the upper tail dependence:
Cre(te, ve;y) = te +ve—1 4 Cc(1—ue, 1—vgy), (A4)

where y€[ — 1, «)\{0} in the Clayton copula and its rotation. However,
according to Patton (2012), when the Clayton (and rotated Clayton) al-
lows for negative dependence for y€ (—1, 0), the form of this depen-
dence is different from that of the positive dependence case (v > 0),
and is not generally used in empirical work.

For the Clayton copula, the lower tail dependence A, = 2~/ and the
upper tail dependence Ay = 0. For the rotation of the Clayton copula,
the upper tail dependence is Ay = 27"/ and the lower tail dependence
)\]_ =0.

A4. Gumbel copula and its rotation

The Gumbel copula is an extreme value copula that has higher prob-
ability concentrated in the upper tail. It is given by:

Co(ue,ve;y) = exp(—((— logu,)” + (— logvf)y)]/y), (A5)
and its rotation focus on the lower tail dependence by:
Cro(Ue, Ve y) = ur +ve—1+ Co(1—ue, 1—v37y), (A.6)

where y€(1,%) in the Gumbel copula and its rotation. For the Gumbel
copula, the upper tail dependence Ay = 2-2'"Y and the lower tail depen-
dence \; = 0, whereas for the rotation of the Gumbel copula, the upper
tail dependence is Ay = 0 and the lower tail dependence A; = 2-2'77.

A.5. Evolution of the copula parameters

The correlation coefficient p; evolves according to the dynamic
model proposed by Patton (2006):

19 _
pe=A ‘Po+‘1’1ﬁz¢’ Nue—j) - @7 (Veej) + P2pp |, (A7)
=

where A denotes the logistic transformation A(x) = (1-e7)(1 4 ™)~ !
that is used to keep p, within (— 1, 1). For the Student-t copula, &~ !(x)
is substituted by t~1,(x).

The dynamics of 7 (7, = ¢/ (2 + 7)) of the Clayton copula and its
rotation follow the evolution:

1 10
T =A| Vo + Wy ﬁzmt,j—vtﬂ-\ + W84 (A.8)
j=1

where A denotes the logistic transformation A(x) = (1 + ™)~ ! to keep
T¢in (0, 1).

The parameter y of the Gumbel copula and its rotation follow the
following dynamics:

1 10
Ve = A(‘I’o + V1Y +W2ﬁ2|uti_vti|>~ (A9)
p

where A denotes the logistic transformation A(x) = 1 + x* to keep the
value of yin (1, «).
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